Matris ve Determinant
MATRİS ve DETERMİNANT
A. MATRİSİN TANIMI şeklinde, bir cismin elemanlarının sıralı bir tablosuna m ´ n türünde Matrisler büyük harfle gösterilir. Tablodaki yatay sıralara satır, düşey sıralara sütun adı verilir.
elemanları, A matrisinin 1. satırını oluşturmaktadır.
elemanları, A matrisinin 3. sütununu oluşturmaktadır. Burada aij genel terimi gösterir. i, satır numarası ve j, sütun numarasıdır. Bu matrisin m kadar satırı, n kadar sütunu vardır.
B. MATRİS ÇEŞİTLERİ 1. Sıfır Matrisi Bütün elemanları sıfır olan matrise sıfır matrisi denir.
2. Kare Matrisi
Satır ve sütun sayısı eşit olan matrise kare matris denir. A matrisi (4 ´ 4 boyutlu) 4 satırlı ve 4 sütunlu bir kare matristir.
3. Birim Matris
Bütün köşegen elemanları 1 ve diğer bütün elemanları sıfır olan kare matrislere birim matris denir ve birim matris I harfi ile gösterilir. Yandaki matris 4 ´ 4 boyutlu birim matristir.
C. MATRİSLERİN EŞİTLİĞİ Aynı türden iki matrisin, bütün aynı indisli terimleri eşit ise, bu matrisler eşittir. Bu ifadenin tersi de doğrudur. Yani, eşit iki matrisin, aynı indisli bütün terimleri eşittir.
D. MATRİSİN DEVRİĞİ (TRANSPOZU) Bir matrisin devriği (transpozu) satırların sütun, sütunların satır haline getirilmesiyle elde edilen matristir. Bir A matrisinin transpozu AT ya da Ad biçimlerinden biri ile gösterilebilir.
E. MATRİSİN REEL SAYI İLE ÇARPIMI Bir matris c gibi bir sayı ile çarpılınca matrisin bütün elemanları c ile çarpılır.
F. MATRİSLERİN TOPLAMI Aynı türden matrisler toplanır. Bunun için, aynı indisli terimler toplanır.
G. MATRİSLERİN FARKI Aynı türden matrisler çıkarılır. Bunun için, aynı indisli terimler çıkarılır.
Özellik
H. İKİ MATRİSİN ÇARPIMI A ve B matrislerinin çarpılabilmesi için A matrisinin sütun sayısı, m ´ n türünde A matrisi ile n ´ p türünde B matrisinin çarpımı m ´ p türünde olur. Çarpma işlemi birinci matrisin satırları ile ikinci matrisin sütunları çarpılıp toplanarak yapılır.
Özellik
I. KARE MATRİSİN KUVVETİ A bir kare matrisi I birim matris ve m, n pozitif tam sayı olmak üzere, matrisin kuvveti aşağıdaki biçimde ifade edilir.
Ayrıca,
olur. Birim matrisin bütün kuvvetleri yine birim matristir.
Kural
J. MATRİSİN DETERMİNANTI Determinant, kare matrisleri bir sayıya eşleyen fonksiyondur. Determinant fonksiyonunun, kare matrisi eşlediği o sayıya matrisin determinantı denir. A matrisinin determinantı, detA veya |A| biçiminde gösterilir. |A|, matrislerde mutlak değer anlamına gelmez. |A| sıfır veya negatif de olabilir.
Kural
1. Sarrus Kuralı A = [aij]3×3 biçimindeki matrislerin determinantını bulmak için Sarrus kuralı kullanılır.
3 ´ 3 türündeki bir matrisin determinantı şöyle bulunur: 1. İlk iki satır sırasıyla alta birer defa daha yazılır. 2. Köşegeni oluşturan a11, a22, a33 çarpılır; çarpım sağa yazılır. 3. Köşegenin hemen altındaki a21, a32, a13 çarpılır; çarpım sağa yazılır. 4. Aynı yaklaşımla a31, a12, a23 çarpılır; çarpım sağa yazılır. 5. Sağa yazılan üç çarpımın toplamı T1 olsun 6. Diğer köşegeni oluşturan a13, a22, a31 çarpılır; çarpım sola yazılır. 7. Diğer köşegenin hemen altındaki a23, a32, a11 çarpılır; çarpım sola yazılır. 8. Aynı yaklaşımla a33, a12, a21 çarpılır; çarpım sola yazılır. 9. Sola yazılan üç çarpımın toplamı T2 olsun,
10. A matrisinin determinantı: detA = T1 – T2 dir.
2. İşaretli Minör (Kofaktör) Bir kare matriste aij elemanının minörü Mij olsun. aij elemanının işaretli minörü (kofaktörü):
Kural
3. Determinantın Özellikleri Özellik
K. EK MATRİS (ADJOİNT MATRİS) Bir matrisin elemanları yerine, o elemanların işaretli minörlerinin yazılıp transpozu alınarak elde edilen matrise ek matris denir ve Ek(A) biçiminde gösterilir.
L. BİR MATRİSİN ÇARPMA İŞLEMİNE GÖRE TERSİ a = [Aij]m×m biçimindeki kare matrislerin, çarpmaya göre tersini A–1 biçiminde gösteririz. Determinantı sıfırdan farklı matrislerin tersi vardır.
Kural
Özellik |
||||||||